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The encoding of vowel features in Mel-Frequency 
Cepstral Coefficients

Most work on acoustic phonetics uses formant frequencies as the parameterization of the phonetic 
signal for understanding the acoustic difference between the sounds of the world’s languages. Work 
in speech technology, however, has relied for several decades on Linear Prediction Coefficients 
(LPC) and Mel-Frequency Cepstral Coefficients (MFCC’s), due to their greater invariance to 
physical differences between speakers. This paper explores the phonetics of the MFCC’s, asking 
whether these coefficients can be used by phoneticians to develop a greater understanding of the 
phonetic nature of speech segments. This is done through an analysis of the ability of individual 
coefficients to distinguish between American English vowels in the Hillenbrand database.
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1. Introduction
For the last seventy years, the most popular parametrization of the speech signal in the 
field of Linguistic Phonetics has been the frequency spectrum (linear, bark, or mel-tran-
formed), whether parameterized in terms of its formants or moments (e.g., Potter, Kopp 
& Green, 1947; Joos, 1948; Odden, 1991; Boersma, Escudero & Hayes, 2003; Forrest, 
Weismer, Milenkovic & Dougall, 1988; Labov, 1994). The spectrum has been used to 
characterize vowel and consonant inventories across languages of the world, sociopho-
netic differences, and the influence of prosody on segmental production. In contrast, the 
field of speech technology started to move away from the spectrum and its formant peaks 
about 50 years ago for the main reason that the shape of the spectrum varies enormously 
across speakers, especially when children are included. This is for the simple reason that 
the spectrum, even when bark or mel-transformed, is highly sensitive to vocal tract length 
which can vary from 5-10 cm in children to 15-18 cm in adults. Early work in speech 
coding established Linear Prediction Coefficients (LPC) and Reflection Coefficients 
(RC), methods based on multiple and partial regression analysis (Wakita, 1973), as pa-
rameterizations of the speech signal that are robust to speaker variability. Later work iden-
tified the closely related Mel-Frequency Cepstral Coefficients (MFCCs) (Mermelstein, 
1976) to be especially robust to large variation in speakers, and became the most popular 
parametrization for speech recognition, since the mid 1980’s. Despite a few exceptions 
(e.g. discrete cosine coefficients, Harrington & Cassidy, 1999), the fields of Linguistic 
Phonetics and Speech Technology have proceeded largely in parallel over the last several 
decades, each using its separate characterization of speech acoustics. This situation is per-
plexing, since speaker-independence should not be a concern only for the speech tech-
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nologist, but also for linguists interested in the acoustic distinctions across dialects and 
across prosodic domains within a dialect, regardless of the specific physical characteristics of 
the speaker. A possible reason for this parallel procession of highly inter-related fields is rr
that since Joos (1948), we have known, at least for vowels, how to phonetically character-
ize the spectrum: the Front/Back contrast is characterized largely by F2, the High/Low 
Contrast is characterized largely by F1, and the Round/Unround contrast is character-
ized by the lowering of both F1 and F2. In contrast, little, if anything, is known about how 
vowel features are encoded in the MFCC coefficients. The goal of this paper is to initiate 
an understanding of the phonetics of MFCC’s, and specifically how the basic vowel fea-
tures of Front/Back, High/Low, and Round/Unround are encoded in these coefficients. 

One hypothesis is that the vowel features are encoded in a highly distributed way across 
the MFCC’s, so that no single coefficient codes for a single vowel feature. The competing 
hypothesis is that the vowel features are encoded in specific coefficients. Which of these 
possibilities holds makes the project of understanding the phonetics of MFCC’s of 
possible interest to speech technologists, not just to linguists. The reason is that a chief 
motivation in the field of speech technology is to express the information in the speech 
signal that is speaker-independent with as few bits as possible. So, if the linguists have 
been correct in the hypothesis that the differences between vowel segments are specifiable 
with very few pieces of information, the feature settings (e.g. Front/Back, High/Low, 
and Round/Unround), and if it is the case that individual MFCC’s code these vowel 
contrasts, then vowels could be specified with a smaller number of coefficients, those 
that specify the featural contrasts. That is, we would establish a hierarchy of importance 
amongst the MFCC’s. Therefore, investigating the phonetics of MFCCs is possibly of 
interest to linguists and technologists. After all, these two groups are basically interested 
in the same thing, efficient encoding of speech, whether it’s for the purpose of efficiently 
describing linguistic systems or for enabling efficient technologies. The overall aim of this 
program, therefore, is to bridge a gap between two fields that have a common interest in 
speech invariants and speech variation, which started five decades ago. The paper will 
concentrate on the Front/Back, High/Low, and Round/Unround features only, and will 
leave features such as Tense/Lax, Nasal/Oral, and the consonant features for future work. 
Also left for future research are time-varying effects, such as coarticulation.

2. MFCCs
The aim of this section is to highlight the meaning of MFCC’s. One aspect is the 
mel-frequency transformation, emphasizing low frequencies, and averaging across 
higher frequencies, and is already quite familiar to linguists as it is a common transfor-
mation of the spectrum (Ladefoged, 1996). Since formant peaks for vowels are quite 
narrow in bandwidth, emphasizing the low frequencies, allows for higher resolution 
necessary for vowel identification. High Frequency burst peaks for stops and sibilant 
noise have higher bandwidth, therefore averaging across large spans of higher frequen-
cy still allows for consonant identification. The Cepstral aspect of MFCC’s part is less 
familiar, except in the particular application to F0 extraction, which will not be dis-
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cussed in this paper. Cepstral Coefficients have a long history in the signal processing 
and geophysics literatures (Robinson, 1954; Bogert, Healy & Turkey, 1963), which 
was reviewed recently in Oppenheim, Schafer (2004).

Before presenting the formula for how to compute MFCC’s, it is useful to understand 
why they were invented. The title of the first paper to present Cepstral coefficients in de-y
tail, Bogert et al. (1963), is quite telling “The quefrency analysis of time-series for echoes”. 
The purpose of the cepstrum was to find echos in time series. In geophysics, where they 
were developed, the interest is in seismogram time series, where signal reflections from 
the earth are processed to find echos from significant structures like oil or earthquakes 
(Silvia, Robinson, 1978). The idea of the cepstrum is to reveal important information 
about where the crucial echoing structures are in the medium from which the signal e
emerges, by processing the signal in a particular way (to be discussed momentarily). If 
we regard the vocal tract as an echoing chamber where glottal and supra-laryngeal sound 
signals are reflected in constrictions and the glottal and lip ends of the vocal tract (Wakita, 
1972), with the speech signal emerging at the lips after all these echoing events, we could 
see how the same cepstral technique could be useful for revealing useful information 
about the constrictions in the vocal tract, potentially revealing information about Vowel 
Constriction Location and Degree, which are basically equivalent to vowel features like 
Front/Back, High/Low, and Round/Unround. The basic finding of Bogert et al. (1963) 
is that the crucial information about the echo generating structures can be found from 
taking the Fourier Transform of the (Log of ) the Fourier Transform (i.e., the spectrum 
that has been at the center of acoustic phonetics). The reason why this works is based 
on the idea of homomorphic signal processing, and was soon recognized by Schafer and 
Oppenheim (Schafer, 1968; Oppenheim, 1964). The basic intuition can be seen in two 
steps: 1) the source-filter theory explains the spectrum of vowels as the multiplication 
of the transfer function of the vocal tract filter and the spectrum of the glottal source in 
the frequency domain, since the independent variables of the functions are frequency; 2) 
taking the Fourier Transform of the Log of the Fourier Transform yields a replacement of 
the spectrum by an addition, instead of a multiplication, of the cepstrum of the vocal tract 
filter and the cepstrum of the glottal wave. Since the spectrum of the glottal wave is rich 
in high frequencies (harmonics) it yields a spike in higher (quefrency) of the cepstrum, 
and can be liftered out, leaving the low quefrency vocal tract contribution. Since the tech-d
nique is closely related to the traditional spectrum, with its amplitude and phase, Bogert 
et al. (1963) used a word game to develop names for the cepstral quantities: the spectrum
became the cepstrum, the independent variable of frequencyf became y quefrency, the mag-
nitude of the spectrum became thee gamnitude, the phase became saphe, and filtering be-
came liftering. The algorithm for measuring the MFCC’s is quite simple:gg

a. Obtain the Fourier spectrum of a portion of the speech signal (e.g. 25 ms).
b. Mel-transform the frequency scale, emphasizing low frequencies.
c. Obtain the logarithm of the mel-transformed Fourier spectrum.
d. Obtain the Fourier spectrum of the previous result.
e. Lifter out the effect of the glottal wave.
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Due to the ubiquity of MFCC’s in speech technologies, many computer languages 
have libraries for computing them. In this paper, the Python python_speech_features 
library was used.

3. Methods
An ideal data set for this investigation is the Hillenbrand vowel database (Hillenbrand, 
Getty, Clark & Wheeler, 1995). This data set contains utterances by 45 men, 48 
women, 27 boys, and 21 girls producing hVd for all the American English vowels. The 
large number of speakers, the inclusion of different ages, and the near staticness of the 
vowel in the h_d context, allows us to understand the phonetics of MFCC’s for static 
vowels in data with high speaker variability, but little temporal variability. The vowels 
were classified by the author, uncontroversially, for their settings of their basic vowel 
features (Table 1). As mentioned earlier the features Tense/Lax which could distin-
guish [i] and [ɪ] for instance, are not being investigated in this paper.

Table 1 - Vowels of American English and their feature specifications

Front/back High/Low Round/Unround

i Front High Unround

ɪ Front High Unround

e Front NA Unround

ɛ Front Low Unround

æ Front Low Unround

ə NA NA NA

u Back High Round

ʊ Back High Round

o Back NA Round

ɔ Back Low Round

ɑ Back Low Unround

ɚ NA NA NA

The database contains the beginning, steady state, and end of each vowel. 25 ms 
were extracted from middle of each steady state, a hamming window was applied, 
and the resulting speech waveform was preemphasized. The python_speech_fea-
tures mfcc function was applied, yielding 13 MFCC’s. The results for two sampling c
rates will be presented:16,000 Hz and 8,000 Hz. The results to be presented are 
sensitive to these specific choices of sampling rates, a problem that will be discussed 
later in Section 5. There were a total of 1668 measurements (540 men vowels, 576 
women vowels, 324 boy vowels, 228 girl vowels).
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4. Results
The goal of this work is to understand how each of the basic vowel features is encod-
ed in the MFCCs. To achieve this goal, for each feature, we compared the vowels 
specified oppositely for that feature on each of the MFCC’s. The results for 16,000 
Hz will be discussed before the results for 8,000 Hz. Figure 1 shows the results for 
the Front/Back feature. Each panel shows how Front and Back vowels compare on 
each of the MFCC’s by showing the distribution of that coefficient’s data for all the 
speakers. To evaluate whether each of the coefficients captures the Front/Back dis-
tinction, an ANOVA was run for each of the coefficients, and the effect was deemed 
significant, if p < .001, a low significance level, due to Bonferroni correction for 39 
(3 Features x 13 coefficients) tests. In addition, to directly test the distance between 
the distributions for each coefficient, the Cohen’s d effect size measure was used for 
measuring the distance between distributions A and B:

Cohen’s d estimates the distance between means of the distributions in units of 
standard deviations. In Figure 1, significance of a distributional contrast is indicat-
ed by an asterisk before the word MFCC at the top of each panel. Significance was 
determined through both p < .001 for the ANOVA test and Cohen’s d being larger 
than 1 standard deviation in magnitude.

Figure 1 - Front/Back encoding by MFCC’s
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As can be seen from Figure 1, MFCC’s 1, 2, 4, and 6 directly and significantly distin-
guish between Front and Back vowels. This does not mean that the other MFCC’s 
do not code for vowel frontness, since they could do so in complex combinations 
with each other. But it does mean that at least one of the MFCC’s, indeed 4, direct-
ly encode one of the most important features used by linguists to describe vowel 
systems.

Figure 2 shows the analogous situation for vowel height. As can be seen, MFCC 
3 and 8 directly code for the height contrast. Two important things emerge from 
this result. One is that the MFCC’s for distinguishing Front/Back (1, 2, 4, 6) do not 
overlap with those that distinguish High from Low (3, 8). This conforms to the idea 
from linguistic phonetics that the features describe different aspects of a segment 
( Jakobson, Fant & Halle, 1952). 

Figure 2 - High/Low encoding by MFCC’s

The other thing that emerges is that the number of MFCC’s that directly en-
code Front/Back is significantly larger than the number of MFCC’s encoding 
High/Low significantly. There are several possible reasons for this. One is an 
inheritance from the spectrum, in which F1, the spectral indicator of Height, 
ranges over a smaller frequency range (approximately 200-1000 Hz) than F2 
(approximately 800-2800 Hz), the spectral indicator of Frontness. Since the 
cepstrum is based on the spectrum, one would expect major aspects of spectral 
structure to affect cepstral structure. Another possibility is that if we relax the 
significance criteria, more MFCC’s would show significant results, therefore 



THE ENCODING OF VOWEL FEATURES IN MEL-FREQUENCY CEPSTRAL COEFFICIENTS 15

the difference would not be indicative of anything substantial about the pho-
netic encoding of MFCC’s.

Figure 3 presents the results for the Round/Unround feature.

Figure 3 - Round/Unround encoding by MFCC’s

The major thing that emerges is that the direct indicators of Round/Unround are 
a subset of those for Front/Back, something that phoneticians have usually refer 
to for English as “backness predicts rounding”. Note also that the direction of the 
effect supports the linguistic fact that Front vowels and Unrounded vowels are sim-
ilar, whereas Back vowels and Rounded vowels are similar. To determine if MFCC’s 
can directly encode rounding in a non-overlapped manner with frontness, one must 
use datasets for languages that have front rounded vowels (like French) or back un-
rounded vowels (like Japanese), which is left for future research.

Figure 4 presents the significant coefficients for the same dataset and features, 
when the sampling frequency was halved at 8,000 Hz. Front/Back is encoded via 
MFCC’s 1, 2, 3, 5. High/Low is encoded via MFCC’s 3 and 6. Round/Unround is 
encoded via MFCC’s 1 and 2. Therefore at this sampling rate, there is indeed over-
lap between the encoding of Front/Back and High/Low in MFCC 3. However, 
MFCC 6 encodes High/Low, and not Front/Back. Further investigation will need 
to take place to reveal why the same MFCC significantly encodes two linguistic dis-
tinctions. The other result emerging from Figure 4 is that Rounding is redundant, 
as was seen with the 16,000 Hz data.
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Figure 4 - Significant encodings of vowel features for 8,000 Hz sampling rate

5. Discussion and conclusion
In this paper, it’s been shown that there are individual MFCC’s that code the lin-l
guistically motivated vowel features used for many decades. The main drawback of 
this work is that we get different results for different sampling rates, which is some-
thing unfamiliar to linguists investigating speech acoustics, where statements about 
F1 and F2 of the spectrum are made regardless of the sampling rate used. What is
even more problematic is that for the higher sampling rate, 16,000 Hz, we had no 
overlap in the MFCC’s encoding Front/Back and High/Low, whereas at the lower 
sampling rate, 8,000 Hz, we get some partial overlap. 

The first issue, having to qualify statements about acoustic phonetics with 
information about the sampling rate used, is not as problematic as it may seem, 
however. The reason that there is sensitivity to sampling rate in MFCC, as well 
as other parameterizations such as Linear Prediction Coefficients and Reflection 
Coefficients, is that these coefficients encode information about the reflectivity of 
acoustic waves in the vocal tract, and sampling rate is directly related to the assumed 
number of tubes we assume the vocal tract to consist of (Wakita, 1972), and in-
versely related to the assumed average length of the vocal tract through the formula: 
SamplingRate = Mc/2l, where e M is the number of tubes, M c is the speed of sound in c
air, and l is the assumed average length of the vocal tract. The higher the sampling l
rate, the higher the assumed number of tubes. Therefore, it should not be surprising 
that the information in these coefficients is sensitive to sampling rate.
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The question then arises as to which sampling rate to use. Familiarity with the spec-
trum for many years has taught us that if we care only about vowels, a sampling 
rate of about 8,000 Hz is sufficient, since the first three formants are below 4,000 
Hz. However, if we care about consonants as well, and there is no general reason to 
not care about them, then 16,000 to 20,000 Hz is sufficient, since the distinctions 
between sibilants for instance can be detected between 5,000 and 10,000 Hz. If we 
sample at higher rates, e.g. the current default of 44,100 Hz, it is quite easy to down-
sample to these rates. Therefore, it is possible to pick an optimal sampling rate like 
16,000 or 20,000 Hz, and make acoustic phonetic statements, assuming whichever 
of them the field settles on. The use of a higher sampling rate like 16,000 Hz also
seems to solve the other problem we saw, which is overlap between the phonetic en-
codings of Front/Back and High/Low, a problem which needs further investigation 
since 8,000 Hz is sufficient for the investigation of vowels, which is what was being 
done in this paper. 

Another issue that arises is redundancy. All the features seem to be encoded 
by more than one MFCC. This is somewhat surprising, since MFCC’s are usual-
ly assumed to be highly uncorrelated, but it is not really a problem, since one can
use multiple indicators of the same feature, leading to more robust classifications. 
Further investigation of how Tense/Lax is encoded, and whether the encoding of 
this feature overlaps with the other features, should reveal how the MFCC’s sepa-
rately and jointly represent linguistic distinctions.
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