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A cross-linguistic study of between-speaker variability 
in intensity dynamics in L1 and L2 spontaneous speech

Dynamic aspects of the amplitude envelope appear to reflect speaker-specific information. 
Intensity dynamics characterized as the temporal displacement of acoustic energy associated 
to articulatory mouth opening (positive) and closing (negative) gestures was able to explain 
between-speaker variability in read productions of native speakers of Zürich German. This 
study examines positive and negative intensity dynamics in spontaneous speech produced 
by Dutch speakers using their native language and English. Acoustic analysis of informal 
monologues was performed to examine between-speaker variability. Negative dynamics 
explained a larger quantity of inter-speaker variability, strengthening the idea of a lesser 
prosodic control over the mouth closing movement. Furthermore, there was a significant 
effect of language on intensity dynamics. These findings suggest that speaker-specific 
information may still be embedded in these time-bound measures despite the language in use.
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1. Introduction
Speech is a dynamic process involving the articulators in our vocal tract that give 
rise to phonetic sounds. These sounds carry meanings that are specific to each 
language, making possible the communication of people sharing the same linguistic 
background. Other than meaning, speech also contains information related to the 
speaker (Coulthard, Johnson & Wright, 2016: 136). This extra-linguistic information, 
considered to be a by-product of speaker-specific biomechanical characteristics 
(Perrier, Winkler, 2015), is extremely valuable in the field of forensic phonetics, where, 
among other tasks, speaker comparison is often employed.

Speaker comparisons involve comparing speech samples of an unknown speaker 
to samples of a known speaker to determine whether the unknown samples may 
belong to the known speaker or to a different speaker. This task can be described as 
an auditory-acoustic analysis where an experienced forensic phonetician performs 
an aural-perceptual investigation and examines the acoustic features of the speech 
signal (Rose, 2002; Coulthard et al., 2016). Among these acoustic features, measures 
of fundamental frequency (Rose, 2002; Gold, French, 2011) and vowel formants 
(Goldstein, 1976; McDougall, 2007; He, Zhang & Dellwo, 2019) are some of 
the most studied parameters, which have been extensively employed in speaker 
comparisons. However, there are still understudied acoustic features containing 
significant speaker-specific information, one of such being intensity dynamics.
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Intensity by itself is not considered a useful discriminative feature (other than in 
the context of formants) because of how easily it can be distorted (Hollien, 1990: 
198). However, considering the temporal organization of intensity provides a different 
approach to the use of this acoustic feature. Intensity dynamics is an aspect of speech 
rhythm, which has been considered a useful parameter for speaker discrimination 
(Gold, French, 2011: 302). Therefore, investigating inter-speaker variation in 
intensity dynamics may further contribute to understanding this rhythmic aspect of 
speech and provide insight into whether it could be useful in forensic applications.

Figure 1 - The upper plot contains an oscillogram of the Dutch word “student” in teal 
and its amplitude envelope (superimposed in red). The lower plot illustrates 

the intensity curve, its peak (IP) and valley (IV) values, and time points associated 
with them (tP and tV). These plots are based on the description of positive 

and negative dynamics by He, Dellwo (2017)

Intensity dynamics can be understood as the rate of energy increase and decrease 
in the acoustic signal and is calculated by analyzing the amplitude envelope of the 
acoustic signal (He, Dellwo, 2017). This concept is demonstrated in Figure 1. In the 
disyllabic Dutch word “student” there are two syllabic peaks, i.e. places with large 
amounts of energy in a syllable, and one place with relative low amounts of energy 
between them, i.e. a valley. IP are peak points where intensity reaches its maximum 
value, and IV is the point where intensity is at its minimal relative to these peaks. 
Positive dynamics is the rate of increase in intensity from a valley (IV) to its right 
adjacent peak (IP). Negative dynamics is rate of decrease in intensity between a peak 
(IP) and the next valley point in time (IV). In the figure above, negative dynamics 
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is demonstrated in the intensity curve (lower plot) by the red secant line IPIV and 
positive dynamics by the secant line IVIP.

Changes in intensity are mainly a result of subglottal pressure variation, although 
both glottal and supra-glottal regions also affect intensity (Fry, 1979; Stevens, 
2000). Regarding the supra-glottal region, it has been proposed and empirically 
demonstrated that the size of mouth opening is one of the factors determining the 
overall intensity of the speech stream (Summerfield, 1992; Chandrasekaran, Friston, 
Trubanova, Stillittano, Caplier & Ghazanfar, 2009; Titze, Palaparthi, 2018). 
Chandrasekaran et al. (2009) found evidence for the relationship between intensity 
and the articulatory movements responsible for mouth opening and closing gestures. 
This study established that the amplitude envelope is closely related to the time course 
of the opening and closing mouth gestures in both read and spontaneous speech 
samples in two languages, English and French. Furthermore, the authors observed 
a significant amount of intra- and inter-speaker variability in the temporal patterns 
of both mouth gestures and the amplitude envelope (Chandrasekaran et al., 2009: 
5). Their results were later supported by He, Dellwo (2017), who suggested that 
inter-speaker variability in the temporal organization of intensity contours of Zürich 
German speakers may reveal the influence of speaker-specific neurophysiological 
characteristic over mouth opening and closing movements.

Speaker-specific effects on dynamic acoustic features reflect behavioral variation 
(Kitamura, Akagi, 2007), i.e. the idiosyncratic way a person operates their articulators 
to produce speech. Speech articulation is so particular to a speaker that even twins, 
who have the same anatomical structures allowing them to produce the same canonical 
phonetic segments, show variation in their production of acoustic dynamic features 
(Zuo, Mok, 2015). Interestingly, He, Dellwo (2017) observed that in read speech 
productions negative intensity dynamics showed more between-speaker variability 
than positive dynamics. They interpreted the lesser variability in positive dynamics 
as a result of greater prosodic control over the mouth opening gesture during speech 
production, suggesting that this gesture may exhibit less speaker-specific information 
due to its function. The authors argued that positive dynamics ask for a more 
controlled mouth opening to reach the presumed articulatory state of a phonetic 
segment (phonetic target). Mouth closing gestures on the other hand, were believed 
to be realized under less prosodic control. That is, once the phonetic target has been 
reached, speakers may reduce control over this articulatory gesture, which in turn can 
result in movements exhibiting speakers’ behavioral and biological characteristics.

The same result was demonstrated in an earlier study, where De Nil, Abbs (1991) 
found a wide variety of mouth closing sequencies involving the lower lip, upper lip 
and jaw in the production of the same utterance by different speakers. Besides the 
different closing sequencies, they also noticed that some patterns were used more 
frequently by some speakers than by others. The fact that each of these articulators 
present a particular morphological structure (Perrier, Winkler, 2015) and are 
employed differently between-speakers helps understanding the variation found in 
He, Dellwo’s (2017) results. Overall, their study offered a significant contribution 

→
→
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to forensic phonetics, providing, as previously mentioned, an additional facet of 
speech rhythm. However, although a seemingly promising parameter, inter-speaker 
differences in intensity dynamics should also be studied under other conditions for 
a better understanding of this feature. Therefore, generalizations and replications in 
other languages and speech styles are necessary.

Speech production of native and non-native languages show similarities and 
differences. The underlying mechanisms of speech production in first (L1) and 
second (L2) languages share similarities related mainly to the mechanical apparatus 
used during speech production, which is theoretically the same for every healthy 
speaker (Hixon, Weismer & Hoit, 2020; Marchal, 2009). Differences in L1 and L2 
productions are found in other complex mechanical and cognitive actions taking 
place before and during speech articulation, which are believed to be influenced by 
language-specific characteristics (Flege, 1995; Best, Tyler, 2006; Escudero, 2009). 
Although speech is perceived as a highly automatic undertaking in the L1, this 
is far from true, since, before words come out of our mouths, an utterance needs 
to be planned and structured (Levelt, 1989). The same is true for the L2, with 
added constraints related to the speaker’s knowledge of this language, and effects 
stemming, for instance, from the L1 phonology (Kormos, 2006).

Similar to differences owed to language specific constraints are differences 
across speaking styles. It has been proposed that spontaneous speech contains 
exclusive phonetic patterns setting it apart from other styles, such as read speech 
(Simpson, 2013). These patterns may be a result of the communicative situation 
a speaker is in, involving different factors that influence speech articulation and 
the resulting acoustic signal (Simpson, 2013: 163). For example, while reading a 
passage, speakers tend to focus more on the vocalization of the utterance, since 
there is no need to formulate the message being delivered because it is already given 
in the text. Contrariwise, when people are talking, information is in the foreground 
and attentional resources are being divided between the formulation of the content 
and the act of vocalization.

Together, differences between languages and speaking styles along with the 
singular way speakers use their anatomically distinctive speech apparatus have a 
significant effect on the acoustic features of speech. Therefore, this study seeks to 
fill the gap in our current knowledge by investigating whether intensity dynamics 
also vary between speakers in spontaneous productions in their L1 and in an L2, 
and whether there is an influence of language over this feature. More specifically, 
this study seeks to answer the following questions:
–	 RQ1: Do measures of intensity dynamics vary between native Dutch speakers?
–	 RQ2: Is this between-speaker variability also present when these speakers use 

English, a second language they are proficient in?
–	 RQ3: Does language influence intensity dynamics?
Regarding RQ1 and RQ2 I hypothesize that between-speaker variability in intensity 
dynamics will be evident despite the language spoken by the speaker, since this 
variability is a result of speaker-specific characteristics (He, Dellwo, 2017), meaning 
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that productions of native Dutch speakers will vary between speakers in the L1 and 
in the L2 English. Regarding RQ3, I hypothesize that there will be an effect of 
language on intensity dynamics, analogous to previous studies in speech dynamics 
(Schwartz, Kaźmierski, 2019).

2. Methodology
2.1 Corpus

The D-LUCEA corpus was used in this study (see Orr, Quené, 2017 for further 
details), from which 51 female native Dutch speakers (age range of approx. 17–
26 years with no reported speech and hearing disorders) were selected based on 
the quality of their recording. Participants were recruited at University College 
Utrecht (UCU) and they reported their proficiency in English by providing 
the results of a formal proficiency exam, which is an entry requirement for this 
language at UCU with the minimum level of proficiency similar to B1 according 
to the Common European Framework of Reference for Languages. Additionally, 
information regarding their language background was collected via a questionnaire 
where speakers had to report their age of acquisition and degree of exposure to the 
language (Orr, Quené, Beek, Diefenbach, Leeuwen & Huijbregts, 2011). Each 
participant was simultaneously recorded via eight microphones in a quiet furnished 
office with at least one facilitator seated at the opposite side from the speaker (Orr, 
Quené, 2017). For this study the selected recordings were the ones captured by 
the microphone closest to the speaker (Sennheiser Headset HSP 2ew; 44.1 kHz; 
16 bit), since this microphone had little variation in the distance between the 
microphone and the speaker’s mouth.

From a total of six performed speaking tasks, two two-minute-long prepared 
informal monologues on a free topic in English (L2) and in Dutch (L1) were selected 
for this study. Most speakers repeated the same monologue in both languages; 
however, some of them simply continued the monologue started in one language. 
These monologues were manually annotated by two annotators and checked by a 
third annotator at four levels: Language spoken, speech type, speech and silence 
intervals, and an orthographic transcription of the utterances. Additionally, two 
more levels were annotated by the author; namely, stretches of fluent uninterrupted 
speech, which were manually selected to ensure precision, followed by an automatic 
segmentation of these stretches into smaller chunks. The nature of these chunks is 
described in the following section.

2.2 Data Preparation

Prior to speech chunking, audio signals containing only the prepared monologues 
in the L1 and the L2 were automatically extracted and stored as separate audio files, 
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to reduce lag during subsequent steps and to normalize amplitude by language1. The 
chunking of the spontaneous speech data was achieved by obtaining uninterrupted 
speech segments between 1.4 s and 1.6 s following Tilsen, Arvaniti (2013). This 
method reduces any variation that may be caused by differences in speech tempo 
and resolves the issue of time normalization, since chunk durations are uniformly 
distributed around 1.5 seconds with a ± 100 ms variation from this value (Tilsen, 
Arvaniti, 2013: 629).

The resulting speech signals were then prepared in Praat (Boersma, Weenink, 
2021), following the initial stages of He, Dellwo’s (2017) methodology. First, the 
DC bias was removed by subtracting the mean amplitude from the signal; then 
a higher-sampled amplitude envelope was created by low-pass filtering the full-
wave rectified speech signal at 10 Hz [Hann filter, roll-off = 6 dB/octave]. Next, 
an intensity object was created in Praat (using the command To Intensity..., with 
Minimum pitch = 100 Hz; Time step = 0.0 s; Subtract mean = True). This 
command squares and windows the signal before creating the intensity object 
(Kaiser-Bessel window: 𝛽 = 20; side lobe attenuation ≅ –190 dB; length: 32 ms). 
This series of signal manipulations results in the amplitude envelope of each signal 
and its intensity object containing intensity point values in time.

Next, the values in the intensity curve were linearly normalized within the range 
[0.01, 1] using the formula:

(1)

Where I´( f ) and I( f ) refer to the normalized and original intensity value at frame 
index f; max and min refer to the maximum and minimum values of the original 
intensity curve, and 1 and 0.01 are the new maximum and minimum values of 
I´( f ). This procedure is analogous to the one employed by He et al. (2019) for the 
normalization of the first formant (F1). The authors proposed that the normalized 
curve maintains only information related to the trajectory of the (F1) curve that can 
be associated to speaker-specific articulatory gestures (He et al., 2019: 210).

Finally, the detection of intensity peaks and valleys was done semi-automatically. 
Instead of placing these points between pre-established syllable boundaries, an 
algorithm was created to automatically detect potential peak and valley points by 
surveying the amplitude envelope. After iterating through all points in the envelope 
collecting their intensity values in time, the algorithm determines if a point is a 
syllabic peak or valley by comparing successive intensity values. If the next value 
is larger than the current, the previous point is stored as a valley. Similarly, if the 
successive value is smaller than the previous point is stored as a peak. Next, all 
prospective pairs of peak and valley points are checked against each other. If their 

1 Normalizing the L1 and L2 data separately ensures that, for each language sample, no cross-linguistic 
influence would affect the analyses of the extracted measures of intensity dynamics.
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difference is larger than a predetermined threshold (min 5 dB), they are considered 
as valid syllabic peaks or valleys. The output of this process is a series of intensity 
values in time of peak and valley points of each syllable in a continuous stretch 
of speech. These values were used in the automatic placement of peak and valley 
demarcation points in the intensity contour. These points were then manually 
checked to ensure correct placement.

2.3 Data Extraction

The intensity values of peaks and valleys were obtained at each of the demarcation 
points from the intensity curve using cubic interpolation, offering true continuity 
between the motion trajectories that pass through each peak and valley point. 
Next, positive dynamics (𝜈I[+]) were computed by calculating the rate of intensity 
increased from a valley to its succeeding peak as follows:

(2)

Where IP and IV refer to the intensity values of the peak tP and valley tV points. 
Similarly, negative dynamics (𝜈I[–]) were measured by calculating the rate of 
intensity decrease from a peak to its right-adjacent valley as shown in (3):

(3)

Here the intensity values taken are absolute, since only the magnitude of the signal 
is of interest for the analyses (He, Dellwo, 2017: 490).

The distributions of positive and negative dynamics in a chunk of spontaneous 
speech were obtained by calculating the mean, standard deviation and Pairwise 
Variability Index, or PVI (Grabe, Low, 2002), of both types of dynamics from speakers’ 
positive and negative slopes by language (min = 167, max = 586). The mean and 
standard deviation of each dynamic type display the central tendency and the overall 
dispersion of a speaker’s intensity dynamics, respectively. The PVI conveys the amount 
of variability between successive syllables by computing and averaging the difference in 
duration between sequential intervals in an utterance (Grabe, Low, 2002). Following 
He, Dellwo’s (2017) notation of these measures, mean_𝜈I[–], stdev_𝜈I[–], and 
pvi_𝜈I[–] refer to negative dynamics and mean_𝜈I[+], stdev_𝜈I[+], and pvi_𝜈I[+] 
to positive dynamics. These measures were stored per chunk per speaker in separate 
data subsets corresponding to language spoken; namely, English (EN) and Dutch (NL).
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2.3 Statistical Analyses

According to He, Dellwo (2017) positive and negative measures may encode 
different types of information, which could be established if they are separated 
into two independent factors (He, Dellwo, 2017: 491). Therefore, factor analysis 
(FA) was employed on all measures of intensity dynamics in both language 
subsets to test whether positive and negative dynamics formed two independent 
categories (extraction method = principal components, eigenvalues ≧ 1; rotation 
method = Varimax with Kaiser normalization). Following, a multinomial logistic 
regression (MLR) was employed to assess how much inter-speaker variability is 
explained by the positive and negative dynamics. In this regression analysis, the 
measures of intensity dynamics were set as the numeric predictor variables and 
speaker as the nominal response variable.

Next, linear discriminant analysis (LDA) was employed to assess how well 
speakers can be discriminated based on positive and negative measures of intensity 
dynamics. The two types of dynamics were used as predictors in two separate analyses, 
one containing only positive measures and another containing only negative ones. 
In these analyses positive and negative measures are used as predictors, and speaker 
as the grouping variable (range = 1 to 51; within-group correlations with Fisher’s 
coefficient; prior probability from group sizes; leave-one-out cross-validation). 
Post-hoc analyses were carried out with each individual measure of both types of 
dynamics to assess which of these measures were better predictors of class.

Subsequently, the effect of language on speakers’ intensity dynamics was 
measured employing linear mixed-effects models (LME). In each model, built in 
a forward stepwise approach, one measure of intensity dynamics was assigned as 
the response variable, language as the main binary dummy fixed factor (0 = Dutch, 
1 = English), and speaker as the random factor with by-language slopes (Bonferroni 
correction a posteriori). Assigning speakers as a random factor in the model increases 
the likelihood that a possible effect of language in the variation of these measures 
is genuine and can be generalized to all individuals fitting the sampling population 
(Walker, 2013: 454). These models were fitted in R (R Core Team, 2020) using 
the nlme package (Pinheiro, Bates, DebRoy & Sarkar, 2020) and using restricted 
maximum likelihood. Model selection was based on the best statistically significant 
model; in case of no significance in model fitness for a particular variable, the one 
with the lowest Log-likelihood value was selected.

3. Results
Table 1 provides a statistical description of the measures of intensity dynamics in 
both language subsets (NNL = 1,843 and NEN = 1,633). The U-test (Wilcoxon rank-
sum test) for central tendency suggests that the center of each measure of intensity 
dynamics differs significantly between both languages. At first glance, stdev_𝜈I[–
] shows relatively low dispersion in both language subsets compared to the other 
measures. Conversely, pvi_𝜈I[–] shows the highest overall dispersion in L1 Dutch. 
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Although means and standard deviations are given for the sake of completeness, a 
better overview of the central tendency and dispersion of each measure of positive 
and negative dynamics can be seen in the values of medians and interquartile ranges 
(IQRs), since there are valid outliers present in the data which do affect the two 
former statistical descriptors.

Table 1 - Means, standard deviations (SD), medians and IQRs for each measure of intensity 
dynamics by language. W indicates the result for the U-test for each measure of intensity 

dynamics. Significance values as follows: ** p < 0.01; *** p < 0.001

L1 Dutch L2 English

Mean (SD) Median IQR Mean (SD) Median IQR W

mean_𝑣I[+] 4.25 (1.22) 4.19 1.59 4.12 (1.30) 4.03 1.76 1596146**

stdev_𝑣I[+] 2.18 ( .85) 2.13 1.15 2.11 ( .94) 2.01 1.24 1598605**

pvi_𝑣I[+] 6.33 (1.67) 6.21 1.97 5.65 (1.42) 5.61 1.80 1850840***

mean_𝑣I[–] 3.23 ( .89) 3.18 1.23 3.05 ( .90) 3.00 1.27 1680520***

stdev_𝑣I[–] 1.61 ( .68) 1.55  .96 1.54 ( .69) 1.48  .94 1595413**

pvi_𝑣I[–] 6.27 (1.73) 6.08 2.02 5.55 (1.39) 5.56 1.80 1867871***

3.1 Factor Analysis

For the Dutch subset the Kaiser-Meyer-Olkin (KMO) measure of sampling 
adequacy (KMO = .513 > .5) and the Barlett’s sphericity test (𝜒2 = 4666.932, 
p <  .0005) indicated that the data was suitable for factor analysis. The same was 
true for the English subset (KMO = .533 > .5; 𝜒2 = 3422.131, p < .0005).

The results on Table 2 show that two factors were extracted for the L2 English 
subset. Factor 1 includes all measures of negative intensity dynamics while Factor 
2 includes all measures of positive dynamics. This outcome suggests that there is 
orthogonality between the measures of positive and negative dynamics, since they 
were classified into different factors. For the L1 subset these results were partially 
similar. While all measures of negative dynamics were classified into one factor, an 
additional measure of positive dynamics, pvi_𝜈I[+], was classified into the same 
factor (Factor 1). The remaining two positive measures were classified into a 
different factor (Factor 2). The reason why pvi_𝜈I[+] was classified alongside the 
measures of negative dynamics for this subset may lie in the very strong positive 
correlation (r = .80) between both positive and negative PVI measures.
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Table 2 - Factor loadings matrix after Varimax rotation. Absolute values under the threshold 
(.40) were suppressed from the table. The shaded cells indicate the highest loading values 

that classify a measure into a particular factor

L1 Dutch L2 English
Factor Loadings Factor Loadings

Factor 1 Factor 2 Factor 1 Factor2
mean_𝑣I[–] .79 .83
stdev_𝑣I[–] .79 –.72 .86 –.49

pvi_𝑣I[–] .70 .57
mean_𝑣I[+] .82 .81
stdev_𝑣I[+] .90 .88

pvi_𝑣I[+] .66 .43 .59
Eigenvalue 2.54 1.35 2.51 1.37

% of variance 42.30 22.57 41.86 22.88

3.2 Multinomial Logistic Regression

The results of the regression analysis (Table 3) show how much inter-speaker 
variability was explained by each measure of intensity dynamics. For the models 
concerning the L1 subset, 48% of between-speaker variability was explained by 
the combined positive measures and 52% by the combined negative measures. 
Similarly, in the L2 subset 49% of this variability was explained by the combined 
positive measures, and 51% by the combined negative measures. Among the 
negative measures, stdev_𝜈I[–] seems to explain most variability in both subsets 
(Dutch = 28.95%, English = 18.35%); among the positive measures pvi_𝜈I[+] 
seems to better explain this variability in the L2 (18.30%), and stdev_𝜈I[+] in the 
L1 (25.95%). Regarding both types of dynamics, stdev_𝜈I[–] shows the greatest 
amount of variability between-speakers in the L1 model (28.95%), and in the L2 
model (18.35%).

Table 3 - Results of Multinomial Logistic Regression for both language subsets. 
–2LL provides model fit and 𝜒2

[df ] tests how each measure explains the variance 
from the baseline model. Significance of reduced models: *p < 0.0005

L1 Dutch L2 English

–2LL 𝜒2
[df ]

Variability 
explained –2LL 𝜒2

[df ]

Variability 
explained

(i) Model fitting information
Null model 14346.47 12727.06
Full model 13315.98 1030.49[300] 11799.39 927.67[300]

(ii) Likelihood ratio test of each measure of intensity dynamics
mean_𝑣I[–] 14016.91 700.94[250]

* 22.70% 12428.18 628.79[250]
* 14.58%

stdev_𝑣I[–] 14209.84 893.87[250]
* 28.95% 12590.72 791.33[250]

* 18.35%
pvi_𝑣I[–] 12579.32 779.93[250]

* 18.08%
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L1 Dutch L2 English

–2LL 𝜒2
[df ]

Variability 
explained –2LL 𝜒2

[df ]

Variability 
explained

mean_𝑣I[+] 14007.43 691.45[250]
* 22.39% 12398.29 598.90[250]

* 13.89%
stdev_𝑣I[+] 14117.32 801.34[250]

* 25.95% 12524.24 724.85[250]
* 16.81%

pvi_𝑣I[+] 12588.50 789.11[250]
* 18.30%

∑ 3087.60 100% 4312.91 100%

3.3 Linear Discriminant Analysis

Multivariate assumptions for data quality were met and the relatively large sample 
size for L1 Dutch (N = 1,843) and L2 English (N = 1,633) were deemed sufficient, 
suggesting that the analysis would be robust to some variations in data quality 
between groups and predictor variables, despite inequality in group sample sizes.

For the L2 subset all measures of intensity dynamics were entered in the LDA. 
For the L1 subset analysis the variables pvi_𝜈I[+] and pvi_𝜈I[–] were left out 
due to their very strong correlation (r = .80) and because when entered separately 
they did not affect the classification rates. To evaluate whether negative dynamics 
were a better predictor of speaker than positive dynamics, two separate analyses 
were carried out: one with the positive measures only (LDA[+]) and one only 
with the negative ones (LDA[–]). For both analyses all predictors were included 
simultaneously, since a stepwise approach did not improve classification rates. Prior 
odds were calculated from within-group sample sizes, and cross-validation was used.

The results from the analyses with combined measures showed that the overall 
percentage of correct classifications for Dutch was low, with virtually no difference 
in the classification performance involving positive or negative dynamics. For both 
analyses, LDA[+] and LDA[–], correct classification rates were ca. 4.8% (chance 
level = 1.9%). For English, LDA[–] had a higher rate of correct classification (4.8%) 
than LDA[+] (3.2%). Given this low classification performance, post-hoc analyses 
were carried out with each individual measure of positive and negative dynamics.

Table 4 - LDA classification results (cross-validated) of individual measures 
per language subset. The column “Measure” displays which measure of intensity dynamics 

was used in the LDA. Chance level = 1.9%

L1 Dutch L2 English

Measure
mean_𝑣I[+] 4.8% 3.5%
stdev_𝑣I[+] 3.4% 2.9%

pvi_𝑣I[+] 4.2% 3.5%
mean_𝑣I[–] 4.8% 4.4%
stdev_𝑣I[–] 4.7% 4.3%

pvi_𝑣I[–] 4.0% 4.0%
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The results of the post-hoc analyses (Table 4) did not show much improvement 
in the classification of speakers. However, this was not surprising, since having 
fewer predictors in the analysis would not necessarily improve classification. 
No discriminant function was able to classify speakers with more than 4.8% of 
accuracy. Nonetheless, these results made apparent that measures of central 
tendency of positive and negative dynamics (mean_𝜈I[+] and mean_𝜈I[–]) 
were better classifiers for the L1 subset (classification accuracy = 4.8%). For the 
L2 subset, stdev_𝜈I[–] (4.3%) and mean_𝜈I[–] (4.4%) were better classifiers of 
group membership.

Table 5 - Linear mixed-effects model to determine the effect of language on measures 
of intensity dynamics. Significance values as follows: *p < 0.05; **p < 0.01; ***p < 0.001. 

a Significance values were corrected (Bonferroni)

mean_𝜈I[–] stdev_𝜈I[–] pvi_𝜈I[–]

Estimation 
Method REML REML REML

Fixed–Effect 
Parameter Est. (SE) 95% CI Est. (SE) 95% CI Est. (SE) 95% CI

β0 (Intercept) 3.23 (.05) [3.14, 3.32] 1.61 (.03) [1.55, 1.66] 6.28 (.06) [6.16, 6.40]

β1 (language)a – .17 (.03)*** [–.23, –.12] – .07 (.02)* [–.11, –.02] – .72 (.05)*** [–.83, –.62]

Covariance 
Parameter Est. 95% CI Est. 95% CI Est. 95% CI

𝜎2 .85 [.83, .87] .67 [.65, .68] 1.52 [1.48, 1.56]
𝜎2

int .30 [.24, .37] .16 [.13, .21] .34 [.27, .44]

mean_𝜈I[+] stdev_𝜈I[+] pvi_𝜈I[+]

Estimation 
Method REML REML REML

Fixed–Effect 
Parameter Est. (SE) 95% CI Est. (SE) 95% CI Est. (SE) 95% CI

β0 (Intercept) 4.27 (.07) [4.13, 4.41] 2.19 (.04) [2.11, 2.28] 6.34 (.06) [6.23, 6.45]

β1 (language)a – .13 (.04)*** [–.21, –.05] – .08 (.03)** [–.14, –.02] – .68 (.05)*** [–.78, –.58]

Covariance 
Parameter Est. 95% CI Est. 95% CI Est. 95% CI

𝜎2 1.17 [1.14, 1.20] .86 [.84, .88] 1.52 [1.49, 1.56]
𝜎2

int .47 [.38, .59] .26 [.20, .32] .31 [.24, .41]

3.4 Linear Mixed-Effects Model

The results for the LME models used to explain the effect of language on each 
measure of intensity dynamics showed a strong main effect of language for all 
measures of intensity dynamics as seen on Table 5. Furthermore, each model’s 
output for random effects (covariance parameter) suggests that the inclusion 
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of the within-group predictor reduces the residual variability for pvi_𝜈I[–] and 
pvi_𝜈I[+] (𝜎2 from 1.56 to 1.52). That is, for these measures setting language as 
a predictor explains that variability thought to be within-speaker was actually due 
to differences across languages. It is noteworthy to mention that the LME models 
were significantly improved in model fitting for all measures by adding random 
slopes. However, a strong main effect of language for all measures was only observed 
when the random effects part did not include the interaction between speaker and 
language. Therefore, here I only reported the models without the 2-way interaction.

4. Discussion
The goals of this study were to investigate (i) whether between-speaker variability 
in intensity dynamics would be present in spontaneous production of L1 Dutch – 
L2 English speakers and (ii) whether language spoken would influence intensity 
dynamics. The results reported here indicated that inter-speaker variability was 
indeed reflected in the measures of intensity dynamics, despite the language spoken 
by the individuals, contributing to the claim that differences in the production of 
this feature could also be attributed to speaker-specific biomechanical characteristics 
(He, Dellwo, 2017).

Interestingly, both MLR and FA analyses did not fully replicate the results found 
for L1 Zurich German speakers, for which (a) the distribution of the variability 
in positive and negative dynamics was highly unbalanced, and (b) both types of 
dynamics were perfectly classified into different factors. Regarding the MLR, one 
possible explanation for the results in this study relates to the type of data used. 
Unlike read speech, spontaneous utterances are believed to display larger variation 
of articulatory patterns and different speech rates (De Nil, Abbs, 1991; Illa, Ghosh, 
2020), both of which would affect intensity dynamics. Therefore, a more balanced 
distribution of between-speaker variability in positive and negative dynamics in 
both languages could be attributed to inherent differences between spontaneous 
and elicited speech (DiCanio, Nam, Amith, García & Whalen, 2015; Simpson, 
2013). Nonetheless, the results presented here did follow in both languages the 
earlier reported tendency that negative dynamics could explain more variability 
between speakers than its positive counterpart.

As for the results of the FA, differences in speaking style could also explain why 
some measures of positive dynamics were classified with negative dynamics for the 
L1. This seems to indicate that, at least for Dutch, the information encoded by 
both types of dynamics is not completely orthogonal in spontaneous speech since 
the results showed no evidence that PVI of positive dynamics would be under more 
prosodic control. As for the L2, this assumption cannot be extended, since both types 
of dynamics followed the tendency reported by He, Dellwo (2017), where positive 
dynamics may have been under more prosodic control than negative dynamics. 
Another interpretation of the different results regarding the L1 and the L2 could be 
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related to the notion that non-native speech may be more carefully produced than 
native speech, and therefore leave less room for variation in positive dynamics.

Although the results did not completely follow earlier trends, both types of 
intensity dynamics still significantly explained inter-speaker variability. Taking this 
into account, the results of the LDA provided a practical picture of the usability 
of this measure by assessing the discriminative power of intensity dynamics in 
spontaneous speech data. The power of each measure did not depend on whether 
the speaker used their L1 or L2. Overall, the higher classification rates for negative 
dynamics in both languages reflect the results in the MLR: negative dynamics 
explained more inter-speaker variability than positive dynamics. Interestingly, this 
was more strongly the case for the L1 than for the L2. This behavior in the L2 seems 
again to suggest that a more balanced amount of variability explained by positive and 
negative dynamics could be linked to careful productions of the L2 (Kormos, 2006).

Although overall both types of dynamics seemed to be poor discriminators 
for spontaneous speech data, a careful inspection of the results made evident that 
for some speakers negative dynamics were a better predictor in the L1 than in the 
L2. These results seem to indicate that language may affect measures of positive 
and negative intensity dynamics differently in each speaker. This was visible in the 
confusion matrices, where some speakers had higher correct classification scores in 
the L2 than in the L1. As to why this was observed remains an open question for 
now. Although generally, the inspection of the confusion matrices strengthens the 
assumption that language may affect the discriminative power of these measures 
differently across speakers.

The results of the LME models confirmed the assumption that language would 
somewhat influence intensity dynamics. These results showed a significant effect of 
language on the temporal organization of intensity contours and were interpreted 
as systematic differences between the rhythmic characteristics of Dutch and 
English. Since both languages belong to the West Germanic language family, they 
share many similarities. However, there are also considerable differences between 
these languages in terms of the phonological and phonetic parameters employed 
during speech production (Hirst, Di Cristo, 1998; Alber, 2020; Page, 2020), which 
characterizes the acoustic parameters of each language.

Finally, the fact that intensity dynamics still displayed enough between-speaker 
variability in both languages strengthens the claim that speaker-specificity may not 
be constrained to the L1 (Bradlow, Blasingame & Lee, 2018; Vaughn, Baese-Berk 
& Idemaru, 2019). Moreover, since it has been proposed that the L1 phonological 
inventory of a speaker may influence their L2 production (Flege, 1995; Best, Tyler, 
2006; Escudero, 2009), the results presented here also seem to indicate that not 
only static information is carried over from the L1 to the L2, but also dynamic 
information, which has also been proposed to be stored in the phonological system 
of a speaker (Schwartz, Kaźmierski, 2019).
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5. Limitations and future research
Although the results of this study provide a significant understanding of speaker-
specific influences on the spontaneous production of intensity dynamics in a native 
and non-native language, the limitations need to be addressed. First, adapting He, 
Dellwo’s (2017) method for the extraction of intensity dynamics could be lacking 
in the sense that it was intended for prepared rather than spontaneous speech. 
Moreover, the chunking method, although previously employed in the investigation 
of rhythmic characteristics in spontaneous speech, could have influenced the 
correlation of some measures, since longer continuous stretches of speech were 
chunked to reduce variation in sample length.

Secondly, to reliably evaluate whether differences between spontaneous and read 
speech are significant for intensity dynamics in L1 Dutch, research with different 
speech styles needs to be conducted. Likewise, this should be considered for the L2. 
In addition, while the hypotheses were confirmed for proficient L2 speakers, it is 
also wise to test whether the results would be similar for beginner and intermediate 
L2 speakers. It is assumed that the L1 will strongly influence L2 productions of 
these speakers; however, one should assess whether the level of control over the 
articulatory gestures governing intensity dynamics is indeed correlated to the 
degree of L2 knowledge.

Moreover, I should emphasize the need to cross-validate the obtained results. 
Kraayeveld (1997: 120) pointed out that time-integrated acoustic measures not only 
depend on the speaker, but they also vary over time. Consequently, cross-validation 
is necessary to assess whether the speaker-specific information present in intensity 
dynamics would indeed remain consistent for a speaker over time. Ultimately, 
after considering the study’s limitations, it remains evident that speaker-specific 
characteristics in intensity dynamics were found in both languages. Therefore, 
future research should seek to investigate to what degree intensity dynamics in one 
language would allow the identification of a speaker in another.
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