
DOI: 10.17469/O2101AISV000030

ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

WO RDEN: a PYTHON interface to automatic
(non)word generation

WORDEN is a PYTHON implementation of a knowledge engine containing data on the
phonological structure of Italian words and on their frequency. These data are imported
from the PHONITALIA database and used with a rules base to provide a formal descrip-
tion of the operations needed to generate words, nonsense words and phonological neigh-
bourhoods for speech production and perception studies. The knowledge engine supports
a wide number of queries from the command line but can also be used via a specifically
designed graphical user interface. In this paper, we report the formal rules included in
WORDEN and provide usage examples to illustrate the capabilities of the tool.

1. Introduction
A knowledge engine, sometimes called an expert system, is a software module that,
given a set of known facts (knowledge base) and a set of inference rules (rules base),
is able to:
– provide yes/no answers to user queries (e.g. “Is <pane> a word?”);
– find all the solutions that satisfy a pattern described in the rules (e.g. “Which

words have a CVCV structure?”).

Logic programming is not new in the field of Natural Language Processing. Nugues
(2014) provides a deep overview of the application of PROLOG to NLP in gener-
al. In computational phonology, logic programming has been applied, for example,
to build computational models of Autosegmental Phonology (Bird, Klein, 1990;
Bird, Ellison, 1994) but its usage in the field is documented in the ’80s, too (see
Grishman, 1986). In the last years, logic programming has found applications in
the field of computational semantics (Sowa, 2014; Stone et al., 2014) for the ex-
ploration of complex semantic networks. Usage of logic programming is typically
considered as opposed to nowadays popular machine learning approaches, where
supervised analysis of large corpora is used to obtain a set of probabilistic models
to classify objects. The two approaches are, in truth, complementary. Logic pro-
gramming allows the researcher to define and easily test formal theories but it does
not support data analysis during the definition of such theories, which can be very
complex in the case of partially known phenomena. Machine learning, on the other
hand, allows to easily analyse and detect regularities in large datasets to obtain sta-
tistical models. These, however, are often hard to interpret and based on probabili-
ties, thus being less suitable for the definition of formal theories.

460 ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

In the following, we present WORDEN, a logic programming-based engine
that assists linguists in finding suitable stimuli for production and perception exper-
iments. In Section 2, we provide some examples of the research areas in linguistics
and psycholinguistics that can benefit from such an engine. The details of the en-
gine (knowledge base, rules base, graphical user interface) are presented in Section
3. Section 4 offers concluding remarks and sketches avenues to future expansion.

2. Applications
Much experimental work in linguistics and psycholinguistics requires subjects to
utter words or sentences (production) or to react to stimuli presented orthographi-
cally or auditorily (perception). Both lines of work require a careful selection of the
stimuli to be used.

In intonation research, for example, the experimenter is often concerned with
the analysis of fundamental frequency contours extracted from speakers’ record-
ings. However, f0 contours are highly sensitive to segmental perturbations (Lehiste,
1970; Di Cristo, 1985). At best, such microprosodic effects make the collected
material highly dependent on the stimuli used in the elicitation task (e.g. vowels
have different intrinsic pitch); at worst, they obscure the phenomena under scruti-
ny (e.g. voiceless segments do not allow for f0 estimation). For these reasons, many
intonologists working with utterances elicited from scripted material devote great
attention to the selection of experimental stimuli, e.g. by using sonorant segments
only, or by restricting stressed vowels to one single type. The following test sentenc-
es for data elicitation, drawn from three studies on Neapolitan Italian, exemplify
such practices:

1. Vedrai la bella mano di Mammola domani? (D’Imperio, 2001)
 Will you see Mammola’s beautiful hand tomorrow?
2. Il benevolo manovale beveva vino (Petrone, 2008)
 The benevolent labourer drank wine
3a. Danilo vola da Roma (Cangemi, D’Imperio, 2013)
 Danilo takes the flight from Rome
3b. Serena vive da Lara
 Serena lives at Lara’s
3c. [CV.CV̀.CV]S [CV̀.CV]V [CV][CV̀.CV]IO

The examples show that it is indeed possible to minimize microprosodic pertur-
bations by design (i.e., by choosing appropriate target words). However, they also
show that this outcome has a cost – either in terms of the semantic and pragmatic
plausibility of the stimuli (example 1), of the familiarity of the lexemes employed
(example 2) or of occasional lapses in constraint satisfaction (example 3b, with its
initial voiceless fricative). Examples 3a-b illustrate the case in which the corpus
to elicit features various sentences sharing phonological and syntactic make-up
(3c), i.e. a trisyllabic paroxitone noun as subject, followed a bisyllabic paroxitone
verb, and by a trisyllabic paroxitone prepositional phrase as indirect object. In this

WORDEN: A PYTHON INTERFACE TO AUTOMATIC (NON)WORD GENERATION 461

case, the researcher has to find actual words in the lexicon to fill in the slots in the
sentence template. Such a template-based stimulus search is particularly costly
for the researcher, if performed manually. WORDEN is a first step towards the
automatization of such searches.

Careful stimulus selection is also required for psycholinguistic studies investi-
gating spoken-word recognition (e.g. Luce, Pisoni, 1998) and the structure of the
mental lexicon. In the past twenty years, research in this vein has documented the
importance of phonological neighbourhood effects in speech production and per-
ception. Neighbourhoods can be understood as “conglomeration of words that are
highly similar to one another along a critical characteristic” (Marian et al., 2012:
1). Phonological neighbours are thus the words which can be constructed by sub-
stituting, inserting or deleting one or more phonemes from a source word (or sim-
ilar revisions of Coltheart et al., 1977 N metric). For example, close phonological
neighbours of Eng. <cat> /kæt/ include <bat> /bæt/, <scat> /skæt/ and <at> /æt/.

The individuation of phonological neighbours for words in any given language
is a task that can only be performed using computerized tools. Such tools exist for
Dutch, English, French, German and Spanish words (CLEARPOND, see Marian
et al., 2012), and for Basque, Dutch, English, French, German, Serbian, Spanish,
and Vietnamese nonwords (WUGGY, see Keuleers, Brysbaert, 2010) but, to our
knowledge, not for Italian words or nonwords. This state of affairs greatly limits
the possibility of exploring the structure of the mental lexicon in Italian through
the prism of phonological neighbourhood.

A recent example of such limitations is provided by the study on phonological
analogy in Neapolitan Italian by Cangemi & Barbato (2014). The study tested
the hypothesis that mid-vowel selection in nonce words is guided by the existence
of phonologically similar actual word in the lexicon. For example, given the exist-
ence of the Neapolitan Italian words /ɛrba/ (‘grass’) and /aʃɛa rba/ (‘unripe’, fem.),
subjects were expected to utter /tɛrba/ (rather than /terba/) when asked to read
aloud the nonword <TERBA>. Crucially, in the absence of a tool for the calcu-
lation of phonological neighbours, the notion of phonologically similar wordsf had
to be operationalized as words with the same (poetical) rhyme. While this choice
made it possible to use an invert dictionary to find the target words, it also mo-
tivated some unexpected results which had to be reinterpreted post-hoc. This is
the case of the nonword <PERMO>, which was expected to be uttered as /per-
mo/ under the influence of /fermo/ ‘closed’, and /ermo/ ‘lonely, remote’ (which
is however a relatively infrequent word). <PERMO> was however most often
uttered as /pɛrmo/, probably under the influence of /pɛrno/ ‘pivot’, /pɛrdo/ ‘to
lose’, and the very frequent /pɛrso/ ‘lost’ – words which do not have the same
(poetical) rhyme as the stimulus, but are among its phonological neighbours.

By using a syllabic template to generate (non)words, and by listing their pho-
nological neighbours along with their frequency of usage, WORDEN provide lin-
guists and psycholinguists with a powerful tool to select stimuli for their experi-
ments.

462 ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

3. WORDEN
WORDEN is a library of functions to generate words and non-sense words
based on a PYTHON module for knowledge engines development called Python
Knowledge Engine (PYKE) (Frederiksen, 2008). We chose an declarative program-
ming solution integrated in Python, rather than relying on external engines, to im-
prove portability. It is also capable of providing insight about their phonological
neighbours and the associated frequency information. In this section, we describe
how the knowledge and the rules bases used in WORDEN were built. Examples
on the queries the system can answer are provided: for each set of facts and rules,
its formal definition is reported together with examples of queries and the system’s
output. We provide here a short summary of how logic programming works and
how the examples are provided. Assume the following situation:
– Bill is Tom’s parent;
– Bill is Will’s sibling;
– Will is Richard’s parent.

This is represented by a set of facts f in the knowledge base. Genealogy states that the chil-
dren of two siblings are cousins and that if one person is sibling of another the opposite
is also true. This is represented by rules that can be used by a knowledge engine to infer
the fact that Tom and Richard are cousins. We then query the system to ask it if
– Will is Bill’s sibling (answer = yes);
– Who are Tom’s cousins, if any (answer = Richard);
– Which parents are known by the system (answer = Bill and Will).

From the syntactic point of view, a free variable (an object the system can assign
values to provide solutions to queries) is represented by a name starting with an up-
percase character (e.g. X, Prefix, etc.). The underscore character represents a “don’t
care” variable, to which any possible value can be assigned during the solution of the
query. The graphical representation of the example described above is organized as
follows. In the left column, we display both facts (top) and rules (bottom). On the
right side, lines starting with “?” indicate a user’s query. Lines starting with “>>”
indicate the system’s feedback.

parent(Bill, Tom) ? sibling(Will, Bill)
parent(Will, Richard) >> yes
sibling(Bill, Will)

? cousin(Tom, X)
sibling (X, Y) : - sibling(Y, X) >> X= Richard
cousin (X, Y) : - parent(Z, X),
 parent(K, Y), ? parent(X, _)
 sibling(Z, K) >> X= Bill

>> X= Will

WORDEN: A PYTHON INTERFACE TO AUTOMATIC (NON)WORD GENERATION 463

Normally, an expert system is queried by command line to allow wide expressivity to
the user. To help users access a closed set of functionalities related to words and non-
sense words generation without using the command line, WORDEN also comes
with a Graphical User Interface.

 3.1 Knowledge base

The current version of WORDEN contains a knowledge base describing Italian
only. This has been automatically generated starting from the PHONITALIA
database (Goslin et al., 2013, http://www.phonitalia.org/). For each term in
PHONITALIA, the grammatical categories it is assigned to are imported as part
of the wordGramCat fact together with the frequency of occurrence of the word
with that particular usage. The symbols used to represent grammatical categories
are the same used in PHONITALIA and the syllabic structure of the word is im-
ported as part of the word fact together with its phonological representation. For
example, the word abate (Eng. ‘abbot’) is represented in WORDEN as follows (see
the PHONITALIA guidelines for the meaning of the labels describing the gram-
matical categories). When asked, the system knows abate is a word.

wordGramCat(abate, S, 8) ? word(abate, _, _)
wordGramCat(abate, E, 4) >> yes
wordGramCat(abate, E_IN_Ea, 2)
wordGramCat(abate, S_IN_Ea, 1) ? word(argine, _, _)
word(abate, (a,ba,te), (a,b,a,t,e)) >> Cannot prove

The reader should note that, if asked about an atom being a word, if the knowledge
base does not contain any information about that particular atom being a word,
the system’s output specifies that, with the current knowledge, it is not possible to
prove that the atom is a word, implying that the answer may still be yes, should
more knowledge be provided. In WORDEN, asking the system if an atom is a word
actually means asking if the word is present in PHONITALIA. Thus, given the
knowledge base represented in the left column of the example, the query on wheth-
er argine is a word yields the feedback Cannot prove.

The knowledge base of WORDEN also imports data concerning lemmas from
PHONITALIA. However, in order to reduce the amount of data to be loaded, we
only imported the words that are not lemmas of themselves. This way, it is later pos-
sible to introduce a rule stating that, if a word does not have a lemma in WORDEN’s
knowledge base, its lemma is the word itself.

? lemma(X, abati)
lemma(abate, abati) >> X= abate
lemma(X, X) :- not(lemma(_, X)) ? lemma(X, abate)

>> X= abate

464 ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

In order to manage queries related to the words’ CV structures, WORDEN’s
knowledge base contains information differentiating the symbols that can form a
word in PHONITALIA between consonants and vowels.

vowel(a) ? vowel(a)
... >> yes
consonant(t)
... ? consonant(9)

>> Cannot prove

 3.2 Rules base

Rules are the most important part of WORDEN. A small set of rules can give the
system the capability of inferring a large set of facts. Rules are often defined induc-
tively: first, a simple base case is defined and, then, an induction step is introduced
attempting to subdivide a complex problem into smaller ones while checking if it is
possible to reach the base case.

In WORDEN’s knowledge base we have imported the phonological rep-
resentation of PHONITALIA words and we have introduced knowledge
about PHONITALIA symbols representing consonants or vowels. This allows
WORDEN to infer the CV structure of lists of PHONITALIA symbols using the
following rules:
– The CV structure of an empty sequence is empty, too (base case)
– The CV structure of a sequence of symbols is composed by the symbol repre-

senting whether the first symbol of the list is a consonant or a vowel followed by
the CV structure of the rest of the list.

In the following examples, we will indicate a list as [Head, *Rest], where Head is a
variable containing the first symbol in the list while *Rest is a list containing the
same symbols of the whole list minus the first one. [] indicates an empty list.

cvStructure
cvStructure

([], [])
([Head, *Rest],
[CvHead, *CvRest]) :-

CvHead = ‘V’
vowel(Head)
cvStructure(*Rest, *CvRest)

? cvStructure([l, a], X)
>> X= [C, V]

cvStructure ([Head, *Rest],
[CvHead, *CvRest]) :-

CvHead = ‘C’
consonant(Head)
cvStructure(*Rest, *CvRest)

? cvStructure(X, [C, V])
>>X=[ba, da, ..., bi, di...]

To better illustrate the example, let’s consider the list of symbols representing the
article la.

WORDEN: A PYTHON INTERFACE TO AUTOMATIC (NON)WORD GENERATION 465

1. Of course, [l, a] does not represent an empty list so the first rule cannot be ap-
plied and the answer cannot be [];

2. The second rule checks if the first element of the list is a vowel: /l/ is not a vowel
so it not possible to say that the answer is [V] followed by the structure of the
list [a];

3. The third rule checks if the first element of the list is a consonant: /l/ is a conso-
nant so it is possible to say that the answer is [C] followed by the structure of the
list [a];

4. To complete the solution at point 3, the same set of rules is applied to the sublist
[a]: since the first element is a vowel, the answer to the subproblem is [V] fol-
lowed by the structure of an empty list [];

5. The CV structure of [] is [] by the first rule, so the solution to the subproblem
of establishing the structure of [a] is [V] prepended to [], thus [V];

6. Since the solution to the problem of establishing the structure of [l, a] is [C]
prepended to the structure of [a], the answer to the original query is [C, V] and
is provided as output.

This way, in WORDEN a formal definition of the concept of CV structure is pres-
ent. This provides the following advantages:
– It is not necessary to specify the structure of every word;
– It is possible to get the structure of any list of symbols (not only words in the

knowledge base);
– Given an inductive definition of the concept, the knowledge engine is able to

use the same rules to find all the possible solutions that lead to a specific struc-
ture.

In the example shown above, we query the system to get all the possible sequences
of consonants followed by vowels. It is also possible to use the CV rules to get all the
words or all the nonsense words with a specific CV structure. This is accomplished
by adding two rules covering the different situations.

cvNonce([CvHead, *CvRest],
[Head, *Rest]) :-
cvStructure([Head, *Rest],
[CvHead, *CvRest])

not(word(_, _, [Head, *Rest]))

cvWord([CvHead, *CvRest],
[Head, *Rest]) :-
cvStructure([Head, *Rest],
[CvHead, *CvRest])

word(_, _, [Head, *Rest])

? cvNonce([C, V], X)
>> X= [[k, u], [w, o], [z, u]...]

? cvWord([C, V], X)
>> X= [[k, i], [s, e], [k, e]...]

466 ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

An additional set of rules allows WORDEN to consider also optional symbols in
the CV structure during generation so that, by considering the sequence [C, (C),
V], the system outputs all the possible CV and CCV sequences of symbols.

In order to be able to manage phonological neighbourhoods, it is necessary to
introduce in the rules base a formal description of the operations of insertion (a
symbol is introduced in the starting sequence), deletion (a symbol is removed from
the starting sequence) and substitution (a symbol becomes another one in the se-
quence). As these rules should be used in inductive procedures to generate phono-
logical neighbourhoods, it is sufficient to define the three operations in terms of the
first element, as we did for the first example in this section. The three rules should
describe that:
– A sequence is obtained from another sequence by substituting its first element if

all the symbols in the two sequences are the same but the first. In both cases the
head symbols must be PHONITALIA symbols;

– A sequence is obtained by inserting a specific symbol to the head of another
sequence if that symbol is prepended to the original sequence;

– A sequence obtained by deleting the head symbol of another sequence is the
original one minus its head, regardless of what it was.

substitution([Start, *Rest1],
[Altstart, Rest2]) :-

symbol(Altstart)
symbol(Start)
Start != Altstart

insertion([Start, *Rest], Ins, [Ins,
Start, *Rest]) :-

symbol(Ins)
symbol(Start)

deletion([_, *Rest], Rest)

? substitution([o,r,a], [a,r,a])
>> yes

? substitution(X, [a,r,a])
>> X= [[t,r,a], [f,r,a],...]

? insertion([m,a,r,i], a, [a,m,a,r,i])
>> yes

? substitution([p,a,r,c,o], [p,a,r,t,o])
>> yes

At this point, it is possible to introduce a set of rules to verify if a sequence can be
obtained by applying one of the possible operations to another sequence. We will
refer to the transformation of a string to another by insertion, deletion or substitu-
tion of a symbol as perturbation. During the exploration of the possible strategies to
obtain a target sequence starting from an initial one it is necessary to consider that
skipping a symbol is an additional operation. The rules should describe that:
1. A sequence is a perturbation of itself;
2. If two sequences share the same head symbol, this can be skipped;
3. If two sequences have different heads, it is possible to consider a substitution,

deletion or insertion operation and check if the rest of the sequence is the target
one.

WORDEN: A PYTHON INTERFACE TO AUTOMATIC (NON)WORD GENERATION 467

This set of rules covers the case where one operation is allowed to reach a target
sequence from a starting one. In this paper, we will cover this situation only. Future
work will extend the system to include more complex planning to include sequences
of operations.

perturbation([Head, *Rest], [Head,
*Rest])

perturbation([Head, *Rest1], [Head,
*Rest2]) :- perturbation(Rest1, Rest2)

perturbation([Head1, *Rest1], [Head2,
*Rest2]) :-
substitution([Head1, *Rest1], [Head2,
*Rest2])

perturbation([Head1, *Rest1], [Head2,
*Rest2]) :-

insertion([Head1, *Rest1], [Head2,
*Rest2])

perturbation([Head1, *Rest1], [Head2,
*Rest2]) :-

deletion([Head1, *Rest1], [Head2,
*Rest2])

? perturbation([p,a,r,c,o],
[p,a,r,t,o])

>> yes

? perturbation([p,a,r,c,o],
[p,a,r,c,o])

>> yes

? perturbation([p,a,r,c,o],
[p,a,r, e, t, i])

>> Cannot prove

At this point, it is possible to define a phonological neighbour of a sequence of sym-
bols as another sequence of symbols that is a perturbation of the initial sequence
and corresponds to a word. The starting sequence may be either a word or a non-
sense word.

phonNeighbour([Head1, *Rest1],
[Head2, *Rest2]) :-

word(_, _, [Head2, *Rest2])
perturbation([Head1, *Rest1],

[Head2, *Rest2])

? phonNeighbour([p,a,r,c,o],
[p,a,r,t,o])

>> yes

? phonNeighbour([p,e,r,m,o],
[f,e,r,m,o])

>> yes

? phonNeighbour([p,e,r,m,o], X)
>> X= [[f,e,r,m,o], ...]

 3.3 Graphical User Interface

The WORDEN knowledge engine can be queried from command line to submit
a variety of questions to the system. However, to support researchers working in
the specific field of speech production and perception, we created a Graphical User

468 ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

Interface to submit specific queries to the system. In Figure 3.1, we show a screen-
shot of the GUI.

Figure 1 - Screenshot of the WORDEN Graphical User Interface

The window is organized in two vertical frames. The frame on the left is dedicated
to word and nonsense words generation starting from a given CV structure possibly
including optional symbols. The frame on the right is dedicated to the generation of
phonological neighbourhoods starting from given sequences of symbols. As phono-
logical neighbourhoods only include words in PHONITALIA, the corresponding
frequency is also given as output. It is possible to move a generated sequence to the
field for phonological neighbourhood generation by double clicking the generated
word/nonsense word. Functions to clear and load/save to text files both lists are
provided.

 4. Conclusions
We have presented WORDEN, a knowledge engine including a knowledge base
extracted from the PHONITALIA database combined with rules providing a for-
mal definition of the operations needed to generate words and nonsense words.
WORDEN also contains a formal definition of phonological neighbourhood start-
ing from arbitrary sequences of symbols.

Using knowledge engines allows to represent formal theories that can be auto-
matically proved or disproved by the engine. Moreover, given a formal description
of the elements involved in a theory, knowledge engines remove the need to store
a large amount of data that can be inferred at runtime. Words, nonsense words and
phonological neighbourhoods, in WORDEN, are generated rather than stored.

WORDEN: A PYTHON INTERFACE TO AUTOMATIC (NON)WORD GENERATION 469

This allows future extension of the system to include more complex theories
building on the top of the already provided concepts. While knowledge engines
can answer a wide set of queries on the basis of the provided facts and rules sets,
we developed a GUI to let researchers interact more easily with the system. While
the GUI limits the possible queries to the ones that are connected to the buttons,
it is always possible to submit more complex queries from the command line by
using PYKE. Being implemented in PYTHON, the system is cross platform as
long as PYTHON is installed. To make it easier for WINDOWS users to access
WORDEN, a platform specific binary is provided.

Future work will concentrate on extending the concepts included in the
WORDEN knowledge. This can both be done by including more languages from
databases other than PHONITALIA and by extending the rules set to allow more
complex theories to be represented. Our current orientation, in this sense, is to in-
clude the possibility of building perturbation plans involving sequences of opera-
tions based on sub- or supra-segmental features and introducing more specific rules
on symbols assembling (i.e. the sonority scale principle) to automatically syllabify
input sequences of symbols. The tool can be obtained by contacting the authors.

 References
Bird, S., Klein, E. (1990). Phonological Events. In Journal of Linguistics, 26, 33-56.
Bird, S., Ellison, T.M. (1994). One level phonology autosegmental representations and
rules as finite automata. In Computational Linguistics, 20, 55-90.
Cangemi, F., Barbato, M. (2014). A laboratory approach to acquisition and change:
Italian mid-vowels in nonce words. Talk presented at the 7th Laboratory Approaches to
Romance Phonology (LARP) Conference.
Cangemi, F., D’Imperio, M. (2013). Tempo and the perception of sentence modality. In
Journal of the Association for Laboratory Phonology, 4 (1), 191-219.
Coltheart, M., Davelaar, E., Jonasson, J.T. & Besner, D. (1977). Access to the in-
ternal lexicon. In Attention and Performance, VI, 535-555.
D’Imperio, M. (2001). Focus and tonal structure in Neapolitan Italian. In Speech
Communication, 33 (4), 339-356.
Di Cristo, A. (1985). De la microprosodie à l’intonosyntaxe. Aix-en-Provence: Publications
Université de Provence.
Frederiksen, B. (2008). Applying expert system technology to code reuse with Pyke. In Proc.
of PyCon [Online: pyke.sourceforge.net/PyCon2008- paper.html].
Goslin, J., Galluzzi, C. & Romani, C. (2013). Phonitalia: a phonological lexicon for
Italian. In Behavior Research Methods, 46 (3), 872-886.
Grishman, R. (1986). Computational Linguistics: An introduction. Cambridge University
Press.
Keuleers, E., Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. In
Behavior Research Methods, 42 (3), 627-633.

470 ANTONIO ORIGLIA, FRANCESCO CANGEMI, FRANCO CUTUGNO

Lehiste, I. (1970). Suprasegmentals. Cambridge: The MIT Press.
Luce, P.A., Pisoni, D.B. (1998). Recognizing spoken words: The neighborhood activa-
tion model. In Ear and Hearing, 19, 1-36.gg
Marian, V., Bartolotti, J., Chabal, S. & Shook, A. (2012). CLEARPOND: Cross-
Linguistic Easy-Access Resource for Phonological and Orthographic Neighborhood
Densities. In PLoS ONE 7 (8).
Nugues, P.M. (2014). Language Processing with Perl and Prolog: Theories, Implementation
and Application. New York: Springer-Verlag.
Petrone, C. (2008). Le rôle de la variabilité tt phonétique dans la représentation des contours éé
intonatifs et de leur sens, PhD Thesis, Université Aix-Marseille I.
Stone, M. (2014). Semantics and computational semantics. In Aloni, M., Dekker, P.
(Eds.), Cambridge Handbook of Semantics. Cambridge: Cambridge University Press.

